Musically Embodied Machine

_earning

The project is an investigation into the musically expressive potential of machine learning when
embodied within physical musical instruments. It proposes ‘tuneable ML’, a novel approach to
exploring the musicality of ML models, when they can be adjusted, personalised and remade,

using the instrument as the interface.

The project asks how instruments can be designed to make effective and musical use of
embedded ML processes, and questions the implications for instrument designers and musicians
when tunable processes are a fundamental driver of an instrument’s musical feel and musical
behaviour.

MEML will run from April 2024 to Sept 2025

Arts and %
Humanities
Research Council Em Ute LQ b c.kiefer@sussex.ac. uk

nteractive Demo

Play a kick drum pattern on the drum machine. A machine learning

model, running on the USEQ module in the modular synthesiser, will

accompany your pattern with other drums on the drum machine. Try
some varied patterns to hear different accompaniments.

The model has been trained on a small dataset of drum patterns.
Based on your kick drum pattern in the previous two bars, it predicts
whether or not the other drums should be playing in the next time step.

== : T T
' DRUMBRUTE S T

L RN E I .

"‘!,'.‘."j i g~ B E 7 w7 owm
ll 2o fll =@ 2

i .1. unlm'wlw .‘
il ©® B8BA" mo SF1=F

by Rate/ e O e

il = 26 AnaABBEBEBEBEBAEB
o 2
g

Sweep.
i

Tom o ymae 1

- - G Ol |
- |®e |®ee [ARTURIA &
VOUR EXPERIENCE -YOUR SOUND (1)

Ma o saap e e o pich [:) :
iy, iy, by, anliry, ailing wilvry, il ity wilry, sl arling, i, |
- - P I
) (9 ! . N ’ ’)
u et Lot Pt Lt e res ot [e [|

lechnology

The drum prediction model needs fo run in realtime within the

The model looks like this:

constrained hardware environment of the uSEQ synthesiser module: a
low-power RP2040 microcontroller, overclocked at 200MHz, with 220Kb void logic_gate net(char const *imp, char *out) |

const char v0 = (char) (inp[20]);

RAM, and no floafing poinf unif (a £1 computerl)

A

const char vl (char) (inp[17] inp([6]);

const char v2 (char) (inp[15]);
The model uses Differentiable Logic to create a system that runs e
))))) . const char (char) (inp[21]):;
extremely quickly, using only bitwise logic operations. conot char v — (ohar) (inn(2] & ~inm(21)s
const char (char) (~inp[3]);
const char (char) (inp[9]):;

The model is trained in Pylorch, then exported fo C code to run on the

const char (char) (inp[31]):;
rrHC:rC)C:CDYWTr()||€3K const char (char) (inp[22] & ~inp[19]);
const char (char) (inp[31]):;

const char (char) (~(char) 0);

The model has @ layers or 240 nodes. It consumes < 2Kb RAM, and

interference fakes around 1.4ms. semct char (@as) ((daplal © La9i261));

const char (char) (inp[15]):;

const char (char) (inp[31l] & inp[31]);

const char (char) (inp[13]);

const char (char) (inp[6] » inp[30]);
const char (char) (inp[24] » inp[14]);
const char (char) (~inp[31]);

const char (char) (~inp[l1l6] | inp[29]);

Petersen, F, Borgelr, C., Kuehne, H. and Deussen, O., 2022. Deep differentiable logic gafe nefworks. Advances in Neural Information Processing Systems, 35, pp.2006-
2018. const char (char) (inp[7] & inp[16]);

