
  

Musically Embodied Machine 
Learning

The project is an investigation into the musically expressive potential of machine learning when 
embodied within physical musical instruments. It proposes ‘tuneable ML’, a novel approach to 
exploring the musicality of ML models, when they can be adjusted, personalised and remade, 

using the instrument as the interface.

The project asks how instruments can be designed to make effective and musical use of 
embedded ML processes, and questions the implications for instrument designers and musicians 

when tunable processes are a fundamental driver of an instrument’s musical feel and musical 
behaviour.

MEML will run from April 2024 to Sept 2025 

c.kiefer@sussex.ac.uk



  

Interactive Demo

Play a kick drum pattern on the drum machine.  A machine learning 
model, running on the uSEQ module in the modular synthesiser, will 
accompany your pattern with other drums on the drum machine.  Try 

some varied patterns to hear different accompaniments.

The model has been trained on a small dataset of drum patterns.  
Based on your kick drum pattern in the previous two bars, it predicts 

whether or not the other drums should be playing in the next time step.



  

Technology
The drum prediction model needs to run in realtime within the 

constrained hardware environment of the uSEQ synthesiser module:  a 
low-power RP2040 microcontroller, overclocked at 250MHz, with 220Kb 

RAM, and no floating point unit (a £1 computer!)

The model uses Differentiable Logic to create a system that runs 
extremely quickly, using only bitwise logic operations.

The model is trained in PyTorch, then exported to C code to run on the 
microcontroller.

The model has 9 layers or 240 nodes. It consumes < 2Kb RAM, and 
interference takes around 1.4ms.

The model looks like this:

void logic_gate_net(char const *inp, char *out) {

const char v0 = (char) (inp[20]);

const char v1 = (char) (inp[17] ^ inp[6]);

const char v2 = (char) (inp[15]);

const char v3 = (char) (inp[17]);

const char v4 = (char) (inp[21]);

const char v5 = (char) (inp[2] & ~inp[2]);

const char v6 = (char) (~inp[3]);

const char v7 = (char) (inp[9]);

const char v8 = (char) (inp[31]);

const char v9 = (char) (inp[22] & ~inp[19]);

const char v10 = (char) (inp[31]);

const char v11 = (char) (~(char) 0);

const char v12 = (char) (inp[31] & inp[31]);

const char v13 = (char) (~(inp[5] ^ inp[26]));

const char v14 = (char) (inp[15]);

const char v15 = (char) (inp[13]);

const char v16 = (char) (inp[6] ^ inp[30]);

const char v17 = (char) (inp[24] ^ inp[14]);

const char v18 = (char) (~inp[31]);

const char v19 = (char) (~inp[16] | inp[29]);

const char v20 = (char) (inp[7] & inp[16]);

const char v21 = (char) (~inp[7]);

const char v22 = (char) (inp[8]);

const char v23 = (char) (inp[20] & ~inp[13]);

const char v24 = (char) (inp[8] & ~inp[4]);

const char v25 = (char) (inp[31] ^ inp[24]);

const char v26 = (char) (~(inp[5] ^ inp[28]));

const char v27 = (char) (~inp[23] | inp[15]);

const char v28 = (char) (inp[30]);

const char v29 = (char) (~inp[4]);

const char v30 = (char) (inp[10] & ~inp[19]);

const char v31 = (char) (inp[2] | inp[8]);

const char v32 = (char) (inp[15]);

const char v33 = (char) (~inp[29] | inp[11]);

const char v34 = (char) (inp[8]);

const char v35 = (char) (~(inp[17] | inp[9]));

const char v36 = (char) (inp[23]);

Petersen, F., Borgelt, C., Kuehne, H. and Deussen, O., 2022. Deep differentiable logic gate networks. Advances in Neural Information Processing Systems, 35, pp.2006-
2018.


