
Formant-based audio synthesis using nonlineardistortionMiller Puckettec
1995 Audio Engineering Society. Reprinted from JAES 43/1, pp. 40-47April 16, 1996AbstractAn audio synthesis technique (\Phase Aligned Formant synthesis") ispresented which is aimed at real-time musical applications. A desiredsound is speci�ed in terms of one or several time-varying formants, eachwith speci�ed center frequencies, bandwidths, and amplitudes. The soundproduced may be periodic or noisy. The relative merits of other knownreal-time techniques for synthesizing sounds with desired formants are alsodiscussed. As an example, a spoken word is analyzed and resynthesized.1 IntroductionDesigning an instrumental voice for a synthesizer often involves planning howthe various partials of the sound will vary in frequency and amplitude over thelife of a note. In many natural sounds the timbre is best described in termsof the spectral envelope, which gives a pitch-independent speci�cation of theevolution of a sound's spectrum in time. This is especially true of the spoken1



or sung voice, whose spectral evolution determines (among other things) thephoneme or phonemes being uttered or sung. The changing spectra of speechand other sounds are crucial to our perception of them.Sounds|especially but not exclusively speech|are often described in termsof their fundamental pitch and several formants, or peaks in the spectral enve-lope. A formant's contribution to the perceived timbre of the sound is roughlydetermined by the formant's peak strength, center frequency, and bandwidth.One can approximately describe a sound's spectral envelope by locating its mostimportant peaks and representing them as formants.In most sounds, the spectral envelope changes dynamically, and to synthesizethem it is not enough merely to be able to create a sound with a static spectrum,but rather one must be able to change the spectral envelope over time. Forexample, a short-term Fourier analysis of a spoken word is shown in Figure 1.As the sound's spectrum changes over time, the number of important spectralpeaks varies, as do their center frequencies, bandwidths, and amplitudes. Thatcertain of these formants are not voiced is invisible in the �gure but clearlyperceived in the sound. A realistic resynthesis must imitate the evolution of thespectrum and also take this voiced/unvoiced distinction into account.Many attempts have been made to synthesize the voice and other soundsfrom a knowledge of how their formants change in time. To date, none has beenproposed which is perfectly suited for real-time musical performance; either thedata must be prepared in a way which requires a great deal of pre-calculation2
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(and hence one can't make decisions on-the-
y as a result of real-time inputs),or else the sound quality has not been high enough for musical use.The PAF (Phase-Aligned Formant) generator, proposed here, is an inexpen-sive method for generating sounds with a desired pitch and set of formants.The PAF is well adapted to real-time musical use because of its relative easeof computation, even in real-time situations where the formants and/or pitchesrequired are not known in advance.1.1 Known methods for generating complex spectraUntil 1973, spectra were usually synthesized using either additive [1] or subtrac-tive synthesis [2]. In additive synthesis, a separate sinewave oscillator is usedfor each partial of the sound; thus the amplitudes and frequencies of all partialsmay be independently controlled. The main drawback to additive synthesis isthe expense of dedicating oscillators to all the partials (there can easily be morethan 100 in a single sound) and of computing, on the basis of some simplerspeci�cation, the desired amplitudes and frequencies of all the partials.In subtractive synthesis, a broadband signal is �ltered, often using a simplebandpass �lter. Subtractive synthesis is less expensive than additive synthesis,but has three serious shortcomings. First, the phases of the partials of a signalare changed by �ltering (unless one uses phase-linear �ltering, but that wouldbe very expensive in this context). Thus, if one adds the outputs of two �lterstheir spectra do not superimpose in an easily predictable or controllable way.One could alternatively try to compound the e�ects of several �lters by applying4



them in series, but in that case it is hard to calculate the coe�cients requiredin the individual �lters to give a desired �nal result.A second problem posed by subtractive synthesis is that of predicting theamplitude of the output of a �lter, especially in transient situations, but evenin the steady state. In general, a �lter whose bandwidth is smaller than thespacing of the partials of a sound will have a larger output when its centerfrequency is aligned with a partial than otherwise. If the �lter coe�cients aretime-varying the problems are compounded.The third problem is numerical accuracy. The di�culties of obtaining nu-merically accurate outputs from recursive �lters are well documented elsewhere[3] and need not be detailed here.The introduction of the Frequency Modulation technique for sound synthesis[4] marked the �rst inexpensive and numerically tractable digital technique forgenerating complex, dynamically-changing spectra. In its simplest form, theFM technique is to calculate samples of the function,F (t) = sin(!ct+ x sin(!mt)); (1)for discrete values of the time t. The parameter x, called the index of modulation,as well as the carrier and modulating frequencies !c and !m, may be varied intime to change the spectrum. The spectrum itself may be found from the Bessel5



function identity,F (t) = 1Xk=0 Jk+1(x) sin((!c + k!m) t) + 1Xk=1 (�1)kJk+1(x) sin((!c � k!m) t);(2)that is, the sound has components of frequency !c�k!m and amplitude Jjk+1j(x).As the index is changed, the various components increase and decrease instrength. One FM-generated sound with a steadily increasing index was an-alyzed to give the spectrum shown in Figure 2. It can be very hard to obtain adesired spectrum out of elementary spectra such as this one.Since the original appearance of FM many variations and generalizationshave been proposed, such as including more than one modulating sine wavein Equation 1, or considering functions of the form f(xg(!0t)) where f andg are arbitrary functions calculated by wavetable lookup and x is an index ofmodulation [5]. The results to date have all su�ered from the unmanageablespectra that arise.At least two other synthesis techniques have been proposed which allowdirect speci�cation of center frequency and bandwidth: VOSIM [6], and theFOF [7]. The VOSIM and FOF synthesis methods address the second and thirdproblems encountered in subtractive synthesis but not the �rst. Both VOSIMand the FOF have outputs with spectra which are more complicated than whatmay be obtained using subtractive synthesis, and with harder-to-predict phases.In addition, the FOF poses an additional problem: its computational expensecan vary without bound depending on its synthesis parameters, complicating6
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Figure 2: Analyzed output from the FM synthesis technique, showing the com-plicated evolution of the formants. 7



the task of adapting it for real-time synthesis.1.2 De�nition of the PAFThe PAF algorithm is proposed as a synthesis technique which satis�es all thecriteria mentioned above: e�ciency of computation, good numerical behavior,and an easily described spectrum whose phases may be controlled to allow easysuperposition of simple spectra into desired ones. The PAF's timbral parametersare simply the desired center frequency and bandwidth; these can easily bechanged over time with stable and predictable results.The PAF algorithm numerically computes samples of the complex-valuedfunction of time, X(t) = 1Xk=�1 ei(k!0+!s)t� j(k!0+!s)�!c j� (3)where !0 is a fundamental frequency in radians per second, !s is a frequencyshift, !c the center frequency of a formant in radians per second, and � itsbandwidth. Rewriting Equation 3 as,X(t) = 1Xk=�1 (cos((k!0 + !s)t) + i sin((k!0 + !s)t)) e� j(k!0+!s)�!c j� (4)shows that the real and imaginary parts of X(t) can be regarded as sums ofcosine and sine waves, respectively, whose angular frequencies are all of theform k!0+ !s and whose amplitude for the partial with angular frequency ! isgiven by, e� j!�!c j� : (5)8
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Figure 3: Component strengths for a PAF with !c = 8!0 and � = 3!0. Thehorizontal axis is the number of the partial; the vertical axis is in DB.If we choose for example !c = 8!0, !s = 0, and � = 3!0, the spectrum in decibels(taking 100 dB to represent unit amplitude) is graphed in Figure 3. In practicewe will usually evaluate only the real or the imaginary part of Equation 3. Thespectra of the real and imaginary parts are obtained by adding or subtractingfrom the above spectrum, its re
ection about ! = 0, as shown in Figure 4.Since the center frequency and bandwidth enter naturally as parameters, itis easy to vary them independently. For instance, sweeping the center frequencywhile holding the bandwidth constant can yield the result shown in Figure 5.Compared to the output of the FM synthesis technique shown in Figure 2, it isclear that the PAF's spectral evolution is much simpler. This greatly simpli�esthe problem of �nding synthesis parameters to approach a desired sonic result.9
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Figure 4: Component strengths for the real and imaginary parts of the PAFwith the same parameters and coordinate axes as before.10
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Figure 5: Analyzed output from a single PAF-generated formant.11



2 E�cient computation of the PAFIn general, we will wish to compute values of X(t) de�ned in Equation 3 fordiscrete values, t = f�; 2�; :::g, where � is the sample period, and where theparameters !0, !c, !s, and �, and functions of them, are regarded as \controlsignals" to be taken from envelope generators.We start by considering the special case in which !s = 0 and !c = n!0,where n is an integer. Equation 3 then becomes,X(t) = 1Xk=�1 e!0�ikt� jk�nj� � (6)= 1Xk=�1 e!0�i(k+n)t� jkj� � (7)= C(t)M (t); (8)where C(t) = ein!0t; (9)M (t) = 1Xk=�1 �gei!0t�k; (10)g = e�!0� : (11)We will refer to the quantity C(t) as the carrier and M (t) as the modulator.Following the example of [8], we rewrite the modulator as,M (t) = 2Re� 11� gei!0t�� 1 (12)= 2Re� 1� ge�i!0t1 + g2 � 2g cos(!0t)�� 1 (13)12



= 1� g21 + g2 � 2g cos(!0t) : (14)In [5] it is noted that this can be rewritten as,M (t) = 1� g2(1 + g2)�1� 2g cos(!0t)1+g2 � (15)= p1(t)s1(x1(t)cos(!0t)); (16)where s1(z) = 11 + z ; (17)p1(t) = 1� g21 + g2 ; (18)x1(t) = �2g1 + g2 : (19)Values of M (t) can therefore be calculated e�ciently using precalculatedtables containing values of the cosine function and of the function s1. (LeBrunactually proposes a slightly di�erent, but equivalent, formula.) The computationrequires two table lookups and two multiplications per output sample, plus twoenvelope generators to approximate the values p1(t) and x1(t).However, this formula works badly in practice because of truncation errorpropagation. If we introduce a small truncation error � to the calculated valueof cos(!0t), and if we assume the worst case,cos(!0t) = 1; (20)13



the magnitude of the error introduced in the calculation ofM (t) will be approx-imately, e � p1(t)s10(x1(t))�: (21)If we take g close to 1, say g = 1� h where h << 1, the relative magnitude ofthe error becomes j( eM (t) )j � js10(x1(t))s1(x1(t)) j� (22)= �1� 2g1+g2 (23)= �1� 2(1�h)2�2h+h2 (24)� 2�h2 : (25)This relative error �gure, based on the worst-case assumption (Equation 20),may be regarded as typical for small values of h, since it is just at the corre-sponding phase that the modulator attains a narrow peak. Since in practice hoften descends to values of 0.1 and lower, applying the function s1 can producean error growth of 100 or more. This puts a high requirement of precision onthe calculation of cos(!0t) and the ensuing arithmetic, as compared to othermusic synthesis techniques such as FM.This di�culty is overcome by rewriting Equation 14 as,M (t) = 1� g2(1� g)2 + 2g (1� cos(!0t)) (26)= 1� g2(1� g)2 + 4gsin2(!0t2 ) (27)14



= 1 + g(1� g)�1 + 4gsin2(!0t2 )(1�g)2 � (28)= p(t)s(x(t)sin(!0t2 )); (29)where s(z) = 11 + z2 ; (30)p(t) = 1 + g1� g ; (31)x(t) = 2pg1� g ; (32)with the same low cost of calculation as before.Analyzing the error propagation in this calculation gives better results. Themaximum absolute value of s0(x)=s(x) is 1; thus no error growth takes placeduring the application of s.2.1 The general caseThe above calculations were based on the assumption that the center frequency!c was an integer multiple of the fundamental frequency !0, and !s = 0. Wenow show how to calculate values ofX(t) in Equation 3 with an arbitrary centerfrequency and nonzero frequency shift. Choosing an integer n and 0 � a < 1 sothat !c � !s = (n + a)!0; (33)15



and setting 
 = !0=�, Equation 3 becomes,X(t) = 1Xk=�1 ei(k!0+!s)t�j(k�n�a)
j: (34)We wish to rewrite the quantity,S = e�j(k�n�a)
j; (35)as a weighted sum: T = ue�j(k�n)
j + ve�j(k�n�1)
j: (36)To do this, we note that for k � n, we have,j (k � n� a) 
j = a
 + j (k � n) 
j = �b
 + j (k � n� 1) 
j; (37)(where for brevity we take b = 1� a), and thus,T = �uea
 + ve�b
� e�j(k�n�a)
j: (38)In the same way, for k > n, we have,T = �ue�a
 + veb
� e�j(k�n�a)
j: (39)Thus we will have S = T for all integral k if we choose u; v so that,uea
 + ve�b
 = ue�a
 + veb
 = 1: (40)While we could easily solve these equations exactly, it is simpler to approx-imate values of ex by 1 + x; in this approximation the solution is simply givenby u = b; v = a. The approximation is closest for small values of g, which16



correspond to bandwidths that are several times the fundamental frequency. Inpractice, the approximation is an improvement over the exact result for smallerbandwidths, since the signal power of a swept formant becomes more nearlyconstant in time.Equation 34 then becomes,X(t) � b 1Xk=�1 ei(k!0+!s)t�j(k�n)gj + a 1Xk=�1 ei(k!0+!s)t�j(k�n�1)gj (41)= (1 + g) �bei(n!0+!s)t + aei((n+1)!0+!s)t�(1� g)�1 + 4gsin2(!0t2 )(1�g)2 � (42)= p(t)s(x(t) sin(!0t2 ))�bei(n!0+!s)t + aei((n+1)!0+!s)t�: (43)This is the form in which the PAF is actually computed.A possible generalization is to replace the waveshaping function, de�ned inEquation 30, by a sum of the formnXk=1 ak1 + ckz2 : (44)The resulting spectrum will thus be a sum of exponentials with di�erent coef-�cients g. As a limiting special case of this, we can obtain the product of apolynomial by an exponential by taking the limit of the above as more than oneof the ck approach the same value. The possibilities raised by these alternatewaveshaping functions have yet to be explored.2.2 Making noisy formantsIn the spoken and sung voice, and also in many acoustic instruments, parts ofthe spectrum at certain points in time are either partially or wholly \noisy,"17



i.e., better approximated by spectrally enveloped noise than as a sum of equallyspaced harmonics. This feature of natural sounds can be of great importance,and so in synthetic sounds, it is useful to be able to imitate it.The simplest, and perhaps the most e�ective, way to use the PAF to generatenoisy signals is not really speci�c to the PAF at all: it consists of providing apost-processor which modulates its input with band-limited noise. In practice,a good result can be obtained using the network shown in Figure 6.3 RealizationA single PAF may be generated in hardware or in software following the blockdiagram shown in Figure 7. Here the operations \cos", \sin", and \s" arethe cosine and sine functions and the waveshaping function of Equation 30,with the appropriate input normalizations; they may be evaluated using tablelookup, either with or without interpolation. If more than one PAF is to be usedto construct a multi-formant structure, they should be combined as in Figure8, which shows a two-formant PAF con�guration. Figure 8 also includes a noisepost-processor con�gured to give independent control over the noisiness of eachformant.3.1 Control issuesThe parameters n, a, b, x, and p in the block diagram may not be changeddiscontinuously without causing audible clicks in the output. The values of pand x may be ramped up and down, but the values of n, a, and b cannot be18
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treated so simply; since n is an integer it cannot be changed continuously. Ifthe center frequency !c or the fundamental !0 is swept, a and b can oscillaterapidly up and down, with an unpleasant e�ect on the sound. The solution is tochange n, a, and b discontinuously at zero crossings of the phase, i.e., at sampleswhere !0t crosses a multiple of 2pi, where the value shown in Equation 43 isindependent of n, a, and b.A subtlety arises for low values of !0, say below 120 radians per second:if a rapid change is desired in any parameter, the widely-separated parameterupdates may sound like a discrete sequence instead of as a continuous change.Also, the reaction time can be unacceptably large since nothing can be changeduntil the next period. In these cases it is sometimes best to ramp the gainquickly to zero, e�ect the desired update, and ramp the gain back up.3.2 ExampleThe recorded voice shown in Figure 1 was resynthesized using six PAF formants.The formants themselves were entered by hand using the Explode editor [9].Resynthesis resulted in the spectrum shown in Figure 9, which is visibly similarto the original. The deviations are partly due to the fact that the formants werealtered to make the word sound more natural, even if the resulting spectrumdiverged from the original. 22
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4 ConclusionThe PAF generator has been implemented in real-time on the IRCAM SignalProcessing Workstation [10] and a patent has been applied for in France. In themeantime, three pieces of music using the PAF generator have been producedat IRCAM and more will doubtless follow. The �rst one, Philippe Manoury'sLa Partition du Ciel et de l'Enfer for orchestra and live electronics (1988), wasrecently conducted by Pierre Boulez in Carnegie Hall [11].The list of published audio synthesis techniques is long; perhaps only half adozen of them have become standard techniques in computer music. It is tooearly to say whether the PAF will become part of this canon or not. The PAF'sunique feature is the ease with which it can be used to generate sounds withspeci�ed time-varying spectral envelopes. The PAF will succeed if this abilityproves relevant in a wide enough range of musical situations.5 AcknowledgementsThis work was carried out while the author was a member of the research sta�at IRCAM (l'Institut de Recherche et Coordination Musique/Acoustique.) Theauthor is indebted to Philippe Manoury who was the �rst to explore the PAFgenerator's musical potential. Stefan Bilbao, Zack Settel, Cort Lippe, LeslieStuck, and Jonathan Bachrach have all contributed to the realization of thePAF generator within IRCAM's music production environment.24
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